Chemistry 1B, Exam II	Name	KEY
March 8, 2007		
Professor R.J. Saykally	ТА	

TOTAL EXAM SCORE (100)

- <u>Rules:</u>
 Work all problems to 2 significant figures
 No lecture notes or books permitted
 No word processing calculators
 Time: 90 minutes

- Show all work to get partial credit
 Periodic Table, Tables of Physical Constants, and Conversion Factors included

Chemistry 1B S'07, Exam II

1. (10 points) Suppose that the following redox couple is joined to form a galvanic cell that generates a current under standard conditions. Identify the oxidizing agent and the reducing agent, write a cell diagram, and calculate the standard cell emf.

$$Co^{2+}/Co \text{ and } Ti^{3+}/Ti^{2+}$$

 $Co^{2+} + 2e^{-} \rightarrow Co(s) \quad E_o = -0.28V$

$$Ti^{3+} + e^- \rightarrow Ti^{2+}$$
 $E_0 = 0.00V$

$$E^{\circ} = 0.00V - (-0.28V) = 0.28V$$

2. (2 points each) The total world energy consumption is <u>14 TW</u>, which is increasing at a rate of <u>5%</u> per year, corresponding to a doubling time of <u>14</u> years. Transportation accounts for <u>27</u>% of this energy use. A typical gasoline auto engine operates at a maximum efficiency near <u>30-50%</u>, wasting much of this energy. <u>Thermal</u> <u>14%</u> also accepted

Name

Name

3. (5 points each) Consider the following chemical reaction (note: 6 electrons are transferred) as a potential source of abundant clean energy for the world:

$$CH_{3}OH(\ell) + \frac{3}{2}O_{2}(g) \rightarrow 2H_{2}O(g) + CO_{2}(g) \qquad \Delta H^{\circ} = -726 \text{ kJ/mole}$$

$$\int_{\alpha r}^{\infty} (H_{2}O(g)) = 189 \text{ JK}^{-1} \text{ mole}^{-1}$$

$$S^{\circ} (CO_{2}(g)) = 198 \text{ JK}^{-1} \text{ mole}^{-1}$$

$$S^{\circ} (O_{2}(g)) = 205 \text{ JK}^{-1} \text{ mole}^{-1}$$

$$S^{\circ} (CH_{3}OH(\ell)) = 127 \text{ JK}^{-1} \text{ mole}^{-1}$$

a) Calculate the maximum possible <u>efficiency</u> for using this reaction in an internal combustion engine operating between temperatures of 2800K and 800K with a compression ratio of 15.

 $eff = 1 - \frac{T_c}{T_h} = 1 - \frac{800K}{2800K} = 0.714$ 71.4%

b) Calculate the maximum <u>electrical work</u> obtainable from a methanol fuel cell operating at <u>1000K</u>.

$$W_{e_{max}} = \Delta G = \Delta H - T \Delta S$$

= -726 kJ/mol - (1000K)(2 (189 J/mol K) + 198 J/mol K)
- 127 J/mol K - $\frac{3}{2}(205 J/mol K)$
= -868 kJ/mol

c) Calculate the maximum <u>electrical power</u> obtainable from the fuel cell above if it can produce a current of 1.0 amperes.

$$P = IE \qquad \Delta G^{\circ} = -nFE^{\circ}$$

$$E^{\circ} = -\frac{\Delta G^{\circ}}{nF} = -\frac{(-868 \ kT_{mol})}{6(96485 \ (mol \ e^{-}))} = 1.50V$$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad Q = \frac{(1 \ bar)^{2} (1 \ bar)}{(1 \ bar)^{3/2}} = 1 \implies \ln Q = 0$$

$$P = (IA)(1.5V) = [1.5W] \implies E = E^{\circ}$$

Chemistry 1B S'07, Exam II

Name _____

d) Calculate the maximum <u>total work</u> obtainable from this reaction at 1000K and 1 atm pressure (hint: use ideal gas approximation).

$$W_{Tot} = W_{elec} + W_{PV}$$

$$W_{pv} = P_{\Delta}V = \Delta nRT = (1.5 \text{ mol})(8.314 \text{ J/mol} \text{ K})(1000 \text{ K})$$

$$= 12.5 \text{ kJ/mol}$$

$$W_{Tot} = -868 \text{ kJ/mol} - 12.5 \text{ kJ/mol} = -880 \text{ kJ/mol}$$

4. (5 points each)

c)

a) Complete and balance the equation for the nuclear reaction: $\begin{array}{r} 243\\95\text{ Am} + \frac{1}{0}n \rightarrow \frac{244}{96}\text{ Cm} + ? + \gamma \end{array}$

$$243 \operatorname{Am} + \operatorname{on} \longrightarrow 244 \operatorname{Gm} + \operatorname{oe} + \chi$$

$$96 \operatorname{Cm} + \operatorname{oe} + \chi$$

$$0r \beta^{-}$$

b) Calculate the energy liberated in this reaction (kJ/mol). Use attached table.

$$\Delta m = (2.44.063 \text{ u})(1.6605 \times 10^{-27} \text{ kg/u}) + 9.109390 \times 10^{-31} \text{ kg}$$

$$- \left[(2.43.061)(1.6605 \times 10^{-27} \text{ kg/u}) + 1.674929 \times 10^{-27} \text{ kg} \right]$$

$$= -1.08 \times 10^{-29} \text{ kg} \implies E = \Delta m c^{2} = (-1.08 \times 10^{-29} \text{ kg})(3 \times 10^{8} \text{ m/s})^{2}$$
Write the balanced equation for α decay of gold - 185.

d) Write the balanced equation for the β^- decay of uranium -233.

5. (10+5+10 points)

a) Determine the emf of the following cell (T = 298K): $Sn(s)|Sn^{2+}(aq, 0.277 \text{ mol} \cdot L^{-1})||Sn^{4+}(aq, 0.867 \text{ mol} \cdot L^{-1}), Sn^{2+}(aq, 0.55 \text{ mol} \cdot L^{-1})||Pt(s)|$

$$E^{\circ} = 0.150V - (-0.136V) = 0.286V$$

$$E^{\circ} = 0.150V - (-0.136V) = 0.286V$$

$$Sn^{2+} + 2e^{\circ} \rightarrow Sn$$

$$E^{\circ} = -0.136V$$

$$Sn^{4+} + 2e^{\circ} \rightarrow Sn^{2+}$$

$$E^{\circ} = +0.150V$$

$$Sn^{4+} + 2e^{\circ} \rightarrow Sn^{2+}$$

$$Sn^{4+} \rightarrow Sn^{2+}$$

$$Sn^{4+}$$

$$\Longrightarrow E = 0.308 [0.31V]$$

b) Calculate the maximum electrical work that can be produced by this cell.

Name

$$\Delta G = -nFE$$

= -2 (G6485 C·mol⁻¹)(0.31V)
 $\Delta G = [-60.3 \text{ kJ/mol}]$

c) Calculate the equilibrium constant for the overall cell reaction.

$$ln K = \frac{n F E^{\circ}}{RT} = \frac{2 (96485 C mol^{-1})(0.286V)}{(8.314 J/mul K)(298K)} = 22.3$$

$$\longrightarrow K = 4.7 \times 10^{9}$$

6. (10+5 points) The relevant half-reactions for the fully charged lead-acid battery (written as reductions) are:

$$PbSO_{4}(s) + 2e^{-} \rightarrow Pb(s) + SO_{4}^{2-}(aq) \qquad E^{\circ} = -0.356V$$

$$PbSO_{2}(s) + 4 H_{3}O^{+} + 2e^{-} \rightarrow PbSO_{4}(s) + 6 H_{2}O \qquad E^{\circ} = +1.685V$$

$$([H^{+}] = [SO_{4}^{2^{-}}] = 6.0 \underline{M})$$

a) Calculate the maximum electrical power available from this battery if a current of 120 amps is produced at 298K.

$$E^{\circ} = 1.685 V - (-0,356V) = 2.041 V$$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q = 2.041 V - \frac{(s.314)(298)}{2(96485)} \ln\left(\frac{1}{6^{4} \cdot 6}\right)$$

$$H^{+} = 50_{4}^{2}$$

b) Estimate the energy equivalent (EE) for this battery (assume it is all Pb).

Chemistry 1B S'07, Exam II

Name

$$\Delta G = -nFE = -2 (96485 C \cdot m_0 I^{*})(2, 156 V)$$

$$\left(\frac{416 \text{ kJ}}{1 \text{ mol Pb}}\right) \left(\frac{1 \text{ mol Pb}}{207.2 \text{ gPb}}\right) = 2.0 \times 10^3 \text{ kJ/kg Pb}$$