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April 22, 2008

Definitions and Useful Formulas:

Boltzmann distribution:
e—BE®)

p(v) = 0

Q= e PEW)
2

First and second laws of thermodynamics:

Partition function:

dE =dw +dq, ds > =

Gibbs free energy:

J

Gibbs-Duhem equation:
SdT' — Vdp+ Ndu =0

Clausius-Clapeyron equation:
dp AS

dT ~ AV

Chemical potential in ideal solution:
;= pl® kpT Inz;
pi = p; (T,p) + kgT'Inz;

Debye screening length:

. 4npI’
Ionic strength:
N;
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G=E-TS+pV, dG=-SdT+Vdp+ Y  p;dN;
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1. Semiconducting materials are characterized by a gap in the spectrum of electronic

states. At zero temperature, all states below the gap (the valence band) are filled,
and all states above the gap (the conduction band) are empty, as sketched below:

conduction band

Egap
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At finite temperature, thermal fluctuations will excite some small fraction of
electrons into the higher energy states. These excitations not only create negatively
charged particles in the conducting band, but also positively charged holes in the
valence band:

particle
\—‘o— conduction band

Egap

— —P— —— —e— —eo— —e— —e— valence band

™~ hole

Both particles and holes can move throughout the material. We will treat them as
distinct chemical species, and consider their motion through conduction and valence
bands as simple translational motion. In other words we will think of them as if
they were ions in solution.

(i) For a semiconductor with a given density p_ of electrons in the conduction
band, spatial regions larger than a certain size ;eytra; Will almost invariably contain
equal numbers of particles and holes. Write this critical length scale in terms of
temperature 7', p_, the crystal’s dielectric constant €, and the charge of an electron
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10 pts  (ii) Describe the effective interaction between two conducting electrons, as
mediated by the crystal and by other particles and holes. The length scale £ eytral
should figure into your answer. Write an equation for this interaction, or plot its
dependence on distance, in support of your description.
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To enhance their conductivity, semiconductors are often doped with other
materials that increase the concentration of charge carrying species. In an n-type
semiconductor, dopants provide electrons to the conduction band. In a p-type
semiconductor, dopants induce holes in the valence band.

n-type pP-type
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dopant states —e—} — (o
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10 pts  (iii) Consider a p-type semiconductor with M,,; valence band states , and Myop
dopant states whose energy is higher by an amount Ae. A single hole can occupy
any one of these valence or dopant states.

conduction band

-O— Ag == —o— Myop of these states
valence band —e— —01- —&— —o— —O— —— —e— M,, Of these states

Under what circumstances would the vast majority of holes reside in the valence
band at equilibrium? Specifically, would this require a large or small value of SA€?
A large or small value of Mgiop/Myp? Explain. (Note that the energy of a hole in
a dopant state is lower than in a valence state because it represents vacancy rather
than occupation.)
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10 pts

A common component of semiconductor technology is the p-n junction, in which a
p-type semiconductor is juxtaposed with an n-type semiconductor:

—e— —— —— —8— — — ~+— |conduction band
mobile~”"
particle

e e el i e . w—— valence band

n-type

(iv) Using the analogy with dilute solutions, write the chemical potential fpart

of particles residing in the conduction band of the n-type region as a function of
temperature (T), the fraction of filled states in the conduction band (Zpart), and a
standard state chemical potential (p,g;),t) that does not depend on the fraction of
filled states. Write a similar expression for the chemical potential pihole Of holes in
the valence band of the p-type region, involving the fraction Thole Of vacant states
in the valence band and uggle. Here vou do not need to consider interactions among
charge carriers.
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Near the p-n interface, particles from the n-type material can recombine with holes
in the p-type material:

= =% —— —— —e— |conduction band

mbination
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n-type

The recombination region is nearly saturated with particle-hole pairs, which as a
result have no translational freedom. We can therefore write the chemical potential

of these pairs as
(0) non—ideal

0
Hpair = Hpair + Hpair
By itself, recombination of a particle and a hole is energetically favorable:

0 0 0
/‘L;(m.)ir T (/";()a)rt + /l’l{xo)le) = —Egap

But recombination also removes negative charge from the originally neutral n-type
material, and adds negative charge to the originally neutral p-type material. An
electrostatic imbalance results, as sketched below.

n-type Ja

recombination
region
The reversible work required to create such an electrostatic imbalance, including
interactions among all charges, is approximately

2
Ta
w(L) = 20

The width of the recombination region, I = 2Npair/ (@pdop), is proportional to the
number Npair of recombined pairs. The cross-sectional area of the recombination
region a is just a constant determined by the size of the device.



10 pts  (v)Explain why the effect of w(L) is considered non-ideal, and calculate its
contribution to the Gibbs free energy, Gor—ideal
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10 pts  (vi) Calculate the chemical potential of recombined particle-hole pairs Hpair a8

a function of L, pqop, €, and ,ugl)ir. When taking derivatives, don’t forget that

) L = 2Nyair/(apgop) is a function of Npgj.
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Particle-hole recombination can be thought of as a chemical equilibrium:

particle + hole = recombined pair

10 pts  (vii) By imposing the thermodynamic condition of chemical equilibrium, determine
the width of the recombination region L as a function of Zpart, Thole; Egap, Pdop, and
€.
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2. When current flows across a p-n junction, each electronic charge transported across
the recombination region delivers an energy Egqp to the crystalline lattice in the
form of heat.

If this heat were not dissipated, the crystal would eventually melt.
The remaining problems concern this melting phenomenon and behavior of the
molten state, in which Si serves as a solvent for dissolved dopants. They do not
involve the occupancy of electronic states, i.e., you do not need to think about
particles and holes to answer these questions.
Some relevant properties of silicon (the most commonly used semiconductor) are
listed below for ambient pressure (1 atm).

Melting temperature: Tn(n Td%mo K

Sol1

Specific heat of solid Si: Cp =0.8J/gK

Specific heat of liquid Si: cliwid) — 107 /g'K

Specific volume of solid Si: ~ V®°lid) = 0.43 cm3/g

Specific volume of liquid Si:  V(!94d) = 0.40 cm3 /g

Specific entropy of melting: ASm =1J/gK

Band gap in crystalline Si:  Egap = 1.6 x 1071° J

(i) How many transported electronic charges are needed to fully melt a device of
mass 1 g, initially operating at temperature T, = 298 K? Assume here that
thermodynamics of the device are the same as those of pure silicon, and that the
properties of liquid and solid phases listed in the table above do not depend on
temperature.

Latent heat L o= T a5
(solid)
Eé“\’ x (ﬂ’ o!; (,\«\krjes> = C/‘, (TM‘T0> . L
J
d o)
T A 1K) + (Foo k)T
(0.2 L)(1#o0 1 -28 K) + ( )
Lavrges = -1 _
(& o.\"tj L (’ < (0 3
22
= 1.8 x10
9

6.03 ol
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10 pts  (ii) Professor Relssieg has filed a patent proposing to extend a device’s lifetime by
operating it under high pressure, which he presumes will raise the melting point.
Calculate the change in melting temperature ATy, of pure silicon when pressure is
increased from 1 atm to 10 atm? Should Relssieg’s patent be approved? [You might
find the following unit conversion helpful: 1 atm-cm® =~ 0.1 J.]
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10 pts  (iii) Professor Relssieg has also submitted a patent to harness mechanical work from siwce AVy <0,
p-n junctions that have melted. His idea is to insert a semipermeable membrane No P wbent
between the p-type and n-type regions, which allows the molten silicon solvent to
pass through but not dopant atoms. Relssieg expects to use the osmotic pressure on
the membrane to drive a motor, as sketched below. RL(SS:@} (
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To demonstrate this new machine, Relssieg will use a junction whose p-type dopant
(gallium) is present at the same concentration as the n-type dopant (arsenic) on the
other side of the membrane. Assuming that the silicon/gallium and silicon/arsenic
solutions behave ideally, explain why Relssieg’s idea will not work.
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