University of California, Berkeley Department of Civil and Environmental Engineering CE120 / Instructor: Marios Panagiotou / Spring 2009

04/22/09

Mid-term Exam 2 Duration (2 hours and 15 minutes)

	Maximum Points	Score
Problem 1	30	
Problem 2	30	
Problem 3	30	
Problem 4	20	
Total	110	

Problem 1 (30 points)

For the beam structure shown below:

- i) Compute the reactions and draw the bending moment and shear force diagrams.
- ii) Draw qualitatively the deflected shape.
- iii) Check if the beam has adequate longitudinal reinforcing steel on top.
- iv) Design the bottom longitudinal reinforcing steel as well as the reinforcing steel for shear. Show clear sketches of the side view and section view of your design.

Notes:

- 1) For the design part you have to use the **LRFD** method. **Do not** consider any load factors.
- 2) For concrete it is given $f_c = 4$ ksi and for steel $f_v = 60$ ksi.

Problem 2 (30 points)

For the frame structure shown below:

- i) Compute the reactions and draw the bending moment, shear force and axial force diagrams.
- ii) Find the dimension b_f of the I-section in order members BC and CD to have adequate flexural and shear strength.
- iii) Find the minimum section moment of inertia I_{AB} in order member AB to have adequate strength against buckling. The critical buckling load is $P_{cr} = \pi^2 EI / (\kappa L)^2$, $\kappa = 1$.

Notes:

- 1) For the design part you have to use the **LRFD** method. **Do not** consider any load factors.
- 2) Find only one b_f which is adequate for bending and shear for both members BC and CD.
- 3) Consider A36 steel, E=29000 ksi.

Problem 3 (30 points)

For the structure shown below find the value of force P for which point C will touch the ground. Which face (vertical or horizontal) of the ground point C will touch? Members AB, BC have the same EI shown below.

Problem 4 (20 points)

The structure shown below is indeterminate to the first degree. It is given that the developed force in member BC is $F_{BC} = 3.83$ kips and is <u>tension</u>. What is the section area A_{BC} of member BC? For all members E=29000 ksi.

